![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > 2eu8 | GIF version |
Description: Two equivalent expressions for double existential uniqueness. Curiously, we can put ∃! on either of the internal conjuncts but not both. We can also commute ∃!x∃!y using 2eu7 2290. (Contributed by NM, 20-Feb-2005.) |
Ref | Expression |
---|---|
2eu8 | ⊢ (∃!x∃!y(∃xφ ∧ ∃yφ) ↔ ∃!x∃!y(∃!xφ ∧ ∃yφ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2eu2 2285 | . . 3 ⊢ (∃!x∃yφ → (∃!y∃!xφ ↔ ∃!y∃xφ)) | |
2 | 1 | pm5.32i 618 | . 2 ⊢ ((∃!x∃yφ ∧ ∃!y∃!xφ) ↔ (∃!x∃yφ ∧ ∃!y∃xφ)) |
3 | nfeu1 2214 | . . . . 5 ⊢ Ⅎx∃!xφ | |
4 | 3 | nfeu 2220 | . . . 4 ⊢ Ⅎx∃!y∃!xφ |
5 | 4 | euan 2261 | . . 3 ⊢ (∃!x(∃!y∃!xφ ∧ ∃yφ) ↔ (∃!y∃!xφ ∧ ∃!x∃yφ)) |
6 | ancom 437 | . . . . . 6 ⊢ ((∃!xφ ∧ ∃yφ) ↔ (∃yφ ∧ ∃!xφ)) | |
7 | 6 | eubii 2213 | . . . . 5 ⊢ (∃!y(∃!xφ ∧ ∃yφ) ↔ ∃!y(∃yφ ∧ ∃!xφ)) |
8 | nfe1 1732 | . . . . . 6 ⊢ Ⅎy∃yφ | |
9 | 8 | euan 2261 | . . . . 5 ⊢ (∃!y(∃yφ ∧ ∃!xφ) ↔ (∃yφ ∧ ∃!y∃!xφ)) |
10 | ancom 437 | . . . . 5 ⊢ ((∃yφ ∧ ∃!y∃!xφ) ↔ (∃!y∃!xφ ∧ ∃yφ)) | |
11 | 7, 9, 10 | 3bitri 262 | . . . 4 ⊢ (∃!y(∃!xφ ∧ ∃yφ) ↔ (∃!y∃!xφ ∧ ∃yφ)) |
12 | 11 | eubii 2213 | . . 3 ⊢ (∃!x∃!y(∃!xφ ∧ ∃yφ) ↔ ∃!x(∃!y∃!xφ ∧ ∃yφ)) |
13 | ancom 437 | . . 3 ⊢ ((∃!x∃yφ ∧ ∃!y∃!xφ) ↔ (∃!y∃!xφ ∧ ∃!x∃yφ)) | |
14 | 5, 12, 13 | 3bitr4ri 269 | . 2 ⊢ ((∃!x∃yφ ∧ ∃!y∃!xφ) ↔ ∃!x∃!y(∃!xφ ∧ ∃yφ)) |
15 | 2eu7 2290 | . 2 ⊢ ((∃!x∃yφ ∧ ∃!y∃xφ) ↔ ∃!x∃!y(∃xφ ∧ ∃yφ)) | |
16 | 2, 14, 15 | 3bitr3ri 267 | 1 ⊢ (∃!x∃!y(∃xφ ∧ ∃yφ) ↔ ∃!x∃!y(∃!xφ ∧ ∃yφ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 ∃!weu 2204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |