NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3eqtrd GIF version

Theorem 3eqtrd 2389
Description: A deduction from three chained equalities. (Contributed by NM, 29-Oct-1995.)
Hypotheses
Ref Expression
3eqtrd.1 (φA = B)
3eqtrd.2 (φB = C)
3eqtrd.3 (φC = D)
Assertion
Ref Expression
3eqtrd (φA = D)

Proof of Theorem 3eqtrd
StepHypRef Expression
1 3eqtrd.1 . 2 (φA = B)
2 3eqtrd.2 . . 3 (φB = C)
3 3eqtrd.3 . . 3 (φC = D)
42, 3eqtrd 2385 . 2 (φB = D)
51, 4eqtrd 2385 1 (φA = D)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-cleq 2346
This theorem is referenced by:  tpeq123d  3815  diftpsn3  3850  vfinncsp  4555  fvun  5379  oveq123d  5544  fvmptd  5703
  Copyright terms: Public domain W3C validator