| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > tpeq123d | GIF version | ||
| Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.) |
| Ref | Expression |
|---|---|
| tpeq1d.1 | ⊢ (φ → A = B) |
| tpeq123d.2 | ⊢ (φ → C = D) |
| tpeq123d.3 | ⊢ (φ → E = F) |
| Ref | Expression |
|---|---|
| tpeq123d | ⊢ (φ → {A, C, E} = {B, D, F}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpeq1d.1 | . . 3 ⊢ (φ → A = B) | |
| 2 | 1 | tpeq1d 3812 | . 2 ⊢ (φ → {A, C, E} = {B, C, E}) |
| 3 | tpeq123d.2 | . . 3 ⊢ (φ → C = D) | |
| 4 | 3 | tpeq2d 3813 | . 2 ⊢ (φ → {B, C, E} = {B, D, E}) |
| 5 | tpeq123d.3 | . . 3 ⊢ (φ → E = F) | |
| 6 | 5 | tpeq3d 3814 | . 2 ⊢ (φ → {B, D, E} = {B, D, F}) |
| 7 | 2, 4, 6 | 3eqtrd 2389 | 1 ⊢ (φ → {A, C, E} = {B, D, F}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1642 {ctp 3740 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-tp 3744 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |