NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  fvun GIF version

Theorem fvun 5379
Description: Value of the union of two functions when the domains are separate. (Contributed by FL, 7-Nov-2011.)
Assertion
Ref Expression
fvun (((Fun F Fun G) (dom F ∩ dom G) = ) → ((FG) ‘A) = ((FA) ∪ (GA)))

Proof of Theorem fvun
StepHypRef Expression
1 funun 5147 . . 3 (((Fun F Fun G) (dom F ∩ dom G) = ) → Fun (FG))
2 funfv 5376 . . 3 (Fun (FG) → ((FG) ‘A) = ((FG) “ {A}))
31, 2syl 15 . 2 (((Fun F Fun G) (dom F ∩ dom G) = ) → ((FG) ‘A) = ((FG) “ {A}))
4 imaundir 5041 . . . 4 ((FG) “ {A}) = ((F “ {A}) ∪ (G “ {A}))
54a1i 10 . . 3 (((Fun F Fun G) (dom F ∩ dom G) = ) → ((FG) “ {A}) = ((F “ {A}) ∪ (G “ {A})))
65unieqd 3903 . 2 (((Fun F Fun G) (dom F ∩ dom G) = ) → ((FG) “ {A}) = ((F “ {A}) ∪ (G “ {A})))
7 uniun 3911 . . 3 ((F “ {A}) ∪ (G “ {A})) = ((F “ {A}) ∪ (G “ {A}))
8 funfv 5376 . . . . . . 7 (Fun F → (FA) = (F “ {A}))
98eqcomd 2358 . . . . . 6 (Fun F(F “ {A}) = (FA))
10 funfv 5376 . . . . . . 7 (Fun G → (GA) = (G “ {A}))
1110eqcomd 2358 . . . . . 6 (Fun G(G “ {A}) = (GA))
129, 11anim12i 549 . . . . 5 ((Fun F Fun G) → ((F “ {A}) = (FA) (G “ {A}) = (GA)))
1312adantr 451 . . . 4 (((Fun F Fun G) (dom F ∩ dom G) = ) → ((F “ {A}) = (FA) (G “ {A}) = (GA)))
14 uneq12 3414 . . . 4 (((F “ {A}) = (FA) (G “ {A}) = (GA)) → ((F “ {A}) ∪ (G “ {A})) = ((FA) ∪ (GA)))
1513, 14syl 15 . . 3 (((Fun F Fun G) (dom F ∩ dom G) = ) → ((F “ {A}) ∪ (G “ {A})) = ((FA) ∪ (GA)))
167, 15syl5eq 2397 . 2 (((Fun F Fun G) (dom F ∩ dom G) = ) → ((F “ {A}) ∪ (G “ {A})) = ((FA) ∪ (GA)))
173, 6, 163eqtrd 2389 1 (((Fun F Fun G) (dom F ∩ dom G) = ) → ((FG) ‘A) = ((FA) ∪ (GA)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642  cun 3208  cin 3209  c0 3551  {csn 3738  cuni 3892  cima 4723  dom cdm 4773  Fun wfun 4776  cfv 4782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727  df-ima 4728  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-fv 4796
This theorem is referenced by:  fvun1  5380
  Copyright terms: Public domain W3C validator