New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > exbidv | GIF version |
Description: Formula-building rule for existential quantifier (deduction rule). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
albidv.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
exbidv | ⊢ (φ → (∃xψ ↔ ∃xχ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1616 | . 2 ⊢ (φ → ∀xφ) | |
2 | albidv.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
3 | 1, 2 | exbidh 1591 | 1 ⊢ (φ → (∃xψ ↔ ∃xχ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: 2exbidv 1628 3exbidv 1629 eubid 2211 eleq1 2413 eleq2 2414 rexbidv2 2638 ceqsex2 2896 alexeq 2969 ceqex 2970 sbc2or 3055 sbc5 3071 sbcex2 3096 sbcexg 3097 sbcabel 3124 eluni 3895 csbunig 3900 intab 3957 el1c 4140 opkelopkabg 4246 otkelins3kg 4255 opkelcokg 4262 opkelimagekg 4272 sfineq1 4527 sfineq2 4528 phiall 4619 cbvopab1 4633 cbvopab1s 4635 setconslem6 4737 csbxpg 4814 opeliunxp 4821 br1st 4859 br2nd 4860 brco 4884 dfdmf 4906 dfrnf 4963 csbrng 4967 dfco2a 5082 cores 5085 tz6.12-2 5347 fnrnfv 5365 dmfco 5382 funiunfv 5468 isomin 5497 cbvoprab1 5568 cbvoprab2 5569 oqelins4 5795 txpcofun 5804 erdmrn 5966 mapsn 6027 bren 6031 ce0nnul 6178 ce0ncpw1 6186 dflec3 6222 nclenc 6223 taddc 6230 |
Copyright terms: Public domain | W3C validator |