Step | Hyp | Ref
| Expression |
1 | | eleq2 2414 |
. . . . . . 7
⊢ (A = B →
(⟪w, u⟫ ∈
A ↔ ⟪w, u⟫
∈ B)) |
2 | 1 | 3anbi3d 1258 |
. . . . . 6
⊢ (A = B →
((y = {{w}} ∧ z = ⟪t,
u⟫ ∧ ⟪w,
u⟫ ∈ A) ↔
(y = {{w}} ∧ z = ⟪t,
u⟫ ∧ ⟪w,
u⟫ ∈ B))) |
3 | 2 | 3exbidv 1629 |
. . . . 5
⊢ (A = B →
(∃w∃t∃u(y = {{w}} ∧ z =
⟪t, u⟫ ∧
⟪w, u⟫ ∈
A) ↔ ∃w∃t∃u(y = {{w}} ∧ z =
⟪t, u⟫ ∧
⟪w, u⟫ ∈
B))) |
4 | 3 | anbi2d 684 |
. . . 4
⊢ (A = B →
((x = ⟪y, z⟫
∧ ∃w∃t∃u(y = {{w}} ∧ z = ⟪t,
u⟫ ∧ ⟪w,
u⟫ ∈ A)) ↔
(x = ⟪y, z⟫
∧ ∃w∃t∃u(y = {{w}} ∧ z = ⟪t,
u⟫ ∧ ⟪w,
u⟫ ∈ B)))) |
5 | 4 | 2exbidv 1628 |
. . 3
⊢ (A = B →
(∃y∃z(x = ⟪y,
z⟫ ∧ ∃w∃t∃u(y = {{w}} ∧ z = ⟪t,
u⟫ ∧ ⟪w,
u⟫ ∈ A)) ↔
∃y∃z(x = ⟪y,
z⟫ ∧ ∃w∃t∃u(y = {{w}} ∧ z = ⟪t,
u⟫ ∧ ⟪w,
u⟫ ∈ B)))) |
6 | 5 | abbidv 2468 |
. 2
⊢ (A = B →
{x ∣
∃y∃z(x = ⟪y,
z⟫ ∧ ∃w∃t∃u(y = {{w}} ∧ z = ⟪t,
u⟫ ∧ ⟪w,
u⟫ ∈ A))} =
{x ∣
∃y∃z(x = ⟪y,
z⟫ ∧ ∃w∃t∃u(y = {{w}} ∧ z = ⟪t,
u⟫ ∧ ⟪w,
u⟫ ∈ B))}) |
7 | | df-ins2k 4188 |
. 2
⊢ Ins2k A = {x ∣ ∃y∃z(x =
⟪y, z⟫ ∧ ∃w∃t∃u(y = {{w}} ∧ z =
⟪t, u⟫ ∧
⟪w, u⟫ ∈
A))} |
8 | | df-ins2k 4188 |
. 2
⊢ Ins2k B = {x ∣ ∃y∃z(x =
⟪y, z⟫ ∧ ∃w∃t∃u(y = {{w}} ∧ z =
⟪t, u⟫ ∧
⟪w, u⟫ ∈
B))} |
9 | 6, 7, 8 | 3eqtr4g 2410 |
1
⊢ (A = B →
Ins2k A = Ins2k B) |