New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ax12o | GIF version |
Description: Derive set.mm's original ax-12o 2142 from the shorter ax-12 1925. (Contributed by NM, 29-Nov-2015.) (Revised by NM, 24-Dec-2015.) |
Ref | Expression |
---|---|
ax12o | ⊢ (¬ ∀z z = x → (¬ ∀z z = y → (x = y → ∀z x = y))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax12v 1926 | . . 3 ⊢ (¬ z = y → (y = w → ∀z y = w)) | |
2 | ax12v 1926 | . . 3 ⊢ (¬ z = y → (y = v → ∀z y = v)) | |
3 | 1, 2 | ax12olem4 1930 | . 2 ⊢ (¬ z = y → (¬ ∀z ¬ y = w → ∀z y = w)) |
4 | ax12v 1926 | . . 3 ⊢ (¬ z = x → (x = w → ∀z x = w)) | |
5 | ax12v 1926 | . . 3 ⊢ (¬ z = x → (x = v → ∀z x = v)) | |
6 | 4, 5 | ax12olem4 1930 | . 2 ⊢ (¬ z = x → (¬ ∀z ¬ x = w → ∀z x = w)) |
7 | 3, 6 | ax12olem7 1933 | 1 ⊢ (¬ ∀z z = x → (¬ ∀z z = y → (x = y → ∀z x = y))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
This theorem is referenced by: ax12 1935 dvelimv 1939 hbae 1953 nfeqf 1958 dvelimh 1964 dvelimf 1997 dvelimALT 2133 ax11eq 2193 ax11indalem 2197 axi12 2333 |
Copyright terms: Public domain | W3C validator |