New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rmoi | GIF version |
Description: Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
rmoi.b | ⊢ (x = B → (φ ↔ ψ)) |
rmoi.c | ⊢ (x = C → (φ ↔ χ)) |
Ref | Expression |
---|---|
rmoi | ⊢ ((∃*x ∈ A φ ∧ (B ∈ A ∧ ψ) ∧ (C ∈ A ∧ χ)) → B = C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmoi.b | . . 3 ⊢ (x = B → (φ ↔ ψ)) | |
2 | rmoi.c | . . 3 ⊢ (x = C → (φ ↔ χ)) | |
3 | 1, 2 | rmob 3135 | . 2 ⊢ ((∃*x ∈ A φ ∧ (B ∈ A ∧ ψ)) → (B = C ↔ (C ∈ A ∧ χ))) |
4 | 3 | biimp3ar 1282 | 1 ⊢ ((∃*x ∈ A φ ∧ (B ∈ A ∧ ψ) ∧ (C ∈ A ∧ χ)) → B = C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 ∃*wrmo 2618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rmo 2623 df-v 2862 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |