New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > difprsnss | GIF version |
Description: Removal of a singleton from an unordered pair. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
difprsnss | ⊢ ({A, B} ∖ {A}) ⊆ {B} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2863 | . . . . 5 ⊢ x ∈ V | |
2 | 1 | elpr 3752 | . . . 4 ⊢ (x ∈ {A, B} ↔ (x = A ∨ x = B)) |
3 | elsn 3749 | . . . . 5 ⊢ (x ∈ {A} ↔ x = A) | |
4 | 3 | notbii 287 | . . . 4 ⊢ (¬ x ∈ {A} ↔ ¬ x = A) |
5 | biorf 394 | . . . . 5 ⊢ (¬ x = A → (x = B ↔ (x = A ∨ x = B))) | |
6 | 5 | biimparc 473 | . . . 4 ⊢ (((x = A ∨ x = B) ∧ ¬ x = A) → x = B) |
7 | 2, 4, 6 | syl2anb 465 | . . 3 ⊢ ((x ∈ {A, B} ∧ ¬ x ∈ {A}) → x = B) |
8 | eldif 3222 | . . 3 ⊢ (x ∈ ({A, B} ∖ {A}) ↔ (x ∈ {A, B} ∧ ¬ x ∈ {A})) | |
9 | elsn 3749 | . . 3 ⊢ (x ∈ {B} ↔ x = B) | |
10 | 7, 8, 9 | 3imtr4i 257 | . 2 ⊢ (x ∈ ({A, B} ∖ {A}) → x ∈ {B}) |
11 | 10 | ssriv 3278 | 1 ⊢ ({A, B} ∖ {A}) ⊆ {B} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 357 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∖ cdif 3207 ⊆ wss 3258 {csn 3738 {cpr 3739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-sn 3742 df-pr 3743 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |