New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqfnfv2 | GIF version |
Description: Equality of functions is determined by their values. Exercise 4 of [TakeutiZaring] p. 28. (Contributed by set.mm contributors, 3-Aug-1994.) (Revised by set.mm contributors, 5-Feb-2004.) |
Ref | Expression |
---|---|
eqfnfv2 | ⊢ ((F Fn A ∧ G Fn B) → (F = G ↔ (A = B ∧ ∀x ∈ A (F ‘x) = (G ‘x)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 4908 | . . . 4 ⊢ (F = G → dom F = dom G) | |
2 | fndm 5183 | . . . . 5 ⊢ (F Fn A → dom F = A) | |
3 | fndm 5183 | . . . . 5 ⊢ (G Fn B → dom G = B) | |
4 | 2, 3 | eqeqan12d 2368 | . . . 4 ⊢ ((F Fn A ∧ G Fn B) → (dom F = dom G ↔ A = B)) |
5 | 1, 4 | syl5ib 210 | . . 3 ⊢ ((F Fn A ∧ G Fn B) → (F = G → A = B)) |
6 | 5 | pm4.71rd 616 | . 2 ⊢ ((F Fn A ∧ G Fn B) → (F = G ↔ (A = B ∧ F = G))) |
7 | fneq2 5175 | . . . . . 6 ⊢ (A = B → (G Fn A ↔ G Fn B)) | |
8 | 7 | biimparc 473 | . . . . 5 ⊢ ((G Fn B ∧ A = B) → G Fn A) |
9 | eqfnfv 5393 | . . . . 5 ⊢ ((F Fn A ∧ G Fn A) → (F = G ↔ ∀x ∈ A (F ‘x) = (G ‘x))) | |
10 | 8, 9 | sylan2 460 | . . . 4 ⊢ ((F Fn A ∧ (G Fn B ∧ A = B)) → (F = G ↔ ∀x ∈ A (F ‘x) = (G ‘x))) |
11 | 10 | anassrs 629 | . . 3 ⊢ (((F Fn A ∧ G Fn B) ∧ A = B) → (F = G ↔ ∀x ∈ A (F ‘x) = (G ‘x))) |
12 | 11 | pm5.32da 622 | . 2 ⊢ ((F Fn A ∧ G Fn B) → ((A = B ∧ F = G) ↔ (A = B ∧ ∀x ∈ A (F ‘x) = (G ‘x)))) |
13 | 6, 12 | bitrd 244 | 1 ⊢ ((F Fn A ∧ G Fn B) → (F = G ↔ (A = B ∧ ∀x ∈ A (F ‘x) = (G ‘x)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∀wral 2615 dom cdm 4773 Fn wfn 4777 ‘cfv 4782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-fv 4796 |
This theorem is referenced by: eqfnfv3 5395 eqfunfv 5398 eqfnov 5590 |
Copyright terms: Public domain | W3C validator |