New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > biimprcd | GIF version |
Description: Deduce a converse commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
biimpcd.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
biimprcd | ⊢ (χ → (φ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (χ → χ) | |
2 | biimpcd.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
3 | 1, 2 | syl5ibrcom 213 | 1 ⊢ (χ → (φ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: biimparc 473 ax11i 1647 ax11eq 2193 ax11el 2194 eleq1a 2422 ceqsalg 2884 cgsexg 2891 cgsex2g 2892 cgsex4g 2893 ceqsex 2894 spc2egv 2942 spc3egv 2944 csbiebt 3173 dfiin2g 4001 eqpw1uni 4331 sfintfin 4533 tfinnn 4535 sfinltfin 4536 funcnvuni 5162 fun11iun 5306 funsi 5521 fundmen 6044 dmfrec 6317 |
Copyright terms: Public domain | W3C validator |