![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > fmpt | GIF version |
Description: Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fmpt.1 | ⊢ F = (x ∈ A ↦ C) |
Ref | Expression |
---|---|
fmpt | ⊢ (∀x ∈ A C ∈ B ↔ F:A–→B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpt.1 | . . . 4 ⊢ F = (x ∈ A ↦ C) | |
2 | 1 | fnmpt 5689 | . . 3 ⊢ (∀x ∈ A C ∈ B → F Fn A) |
3 | 1 | rnmpt 5686 | . . . 4 ⊢ ran F = {y ∣ ∃x ∈ A y = C} |
4 | r19.29 2754 | . . . . . . 7 ⊢ ((∀x ∈ A C ∈ B ∧ ∃x ∈ A y = C) → ∃x ∈ A (C ∈ B ∧ y = C)) | |
5 | eleq1 2413 | . . . . . . . . 9 ⊢ (y = C → (y ∈ B ↔ C ∈ B)) | |
6 | 5 | biimparc 473 | . . . . . . . 8 ⊢ ((C ∈ B ∧ y = C) → y ∈ B) |
7 | 6 | rexlimivw 2734 | . . . . . . 7 ⊢ (∃x ∈ A (C ∈ B ∧ y = C) → y ∈ B) |
8 | 4, 7 | syl 15 | . . . . . 6 ⊢ ((∀x ∈ A C ∈ B ∧ ∃x ∈ A y = C) → y ∈ B) |
9 | 8 | ex 423 | . . . . 5 ⊢ (∀x ∈ A C ∈ B → (∃x ∈ A y = C → y ∈ B)) |
10 | 9 | abssdv 3340 | . . . 4 ⊢ (∀x ∈ A C ∈ B → {y ∣ ∃x ∈ A y = C} ⊆ B) |
11 | 3, 10 | syl5eqss 3315 | . . 3 ⊢ (∀x ∈ A C ∈ B → ran F ⊆ B) |
12 | df-f 4791 | . . 3 ⊢ (F:A–→B ↔ (F Fn A ∧ ran F ⊆ B)) | |
13 | 2, 11, 12 | sylanbrc 645 | . 2 ⊢ (∀x ∈ A C ∈ B → F:A–→B) |
14 | 1 | mptpreima 5682 | . . . 4 ⊢ (◡F “ B) = {x ∈ A ∣ C ∈ B} |
15 | fimacnv 5411 | . . . 4 ⊢ (F:A–→B → (◡F “ B) = A) | |
16 | 14, 15 | syl5reqr 2400 | . . 3 ⊢ (F:A–→B → A = {x ∈ A ∣ C ∈ B}) |
17 | rabid2 2788 | . . 3 ⊢ (A = {x ∈ A ∣ C ∈ B} ↔ ∀x ∈ A C ∈ B) | |
18 | 16, 17 | sylib 188 | . 2 ⊢ (F:A–→B → ∀x ∈ A C ∈ B) |
19 | 13, 18 | impbii 180 | 1 ⊢ (∀x ∈ A C ∈ B ↔ F:A–→B) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 ∀wral 2614 ∃wrex 2615 {crab 2618 ⊆ wss 3257 “ cima 4722 ◡ccnv 4771 ran crn 4773 Fn wfn 4776 –→wf 4777 ↦ cmpt 5651 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-fv 4795 df-mpt 5652 |
This theorem is referenced by: fmpti 5693 fmptd 5694 fmpt2x 5730 enprmaplem5 6080 |
Copyright terms: Public domain | W3C validator |