NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  fmpt GIF version

Theorem fmpt 5693
Description: Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
fmpt.1 F = (x A C)
Assertion
Ref Expression
fmpt (x A C BF:A–→B)
Distinct variable groups:   x,A   x,B
Allowed substitution hints:   C(x)   F(x)

Proof of Theorem fmpt
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 fmpt.1 . . . 4 F = (x A C)
21fnmpt 5690 . . 3 (x A C BF Fn A)
31rnmpt 5687 . . . 4 ran F = {y x A y = C}
4 r19.29 2755 . . . . . . 7 ((x A C B x A y = C) → x A (C B y = C))
5 eleq1 2413 . . . . . . . . 9 (y = C → (y BC B))
65biimparc 473 . . . . . . . 8 ((C B y = C) → y B)
76rexlimivw 2735 . . . . . . 7 (x A (C B y = C) → y B)
84, 7syl 15 . . . . . 6 ((x A C B x A y = C) → y B)
98ex 423 . . . . 5 (x A C B → (x A y = Cy B))
109abssdv 3341 . . . 4 (x A C B → {y x A y = C} B)
113, 10syl5eqss 3316 . . 3 (x A C B → ran F B)
12 df-f 4792 . . 3 (F:A–→B ↔ (F Fn A ran F B))
132, 11, 12sylanbrc 645 . 2 (x A C BF:A–→B)
141mptpreima 5683 . . . 4 (FB) = {x A C B}
15 fimacnv 5412 . . . 4 (F:A–→B → (FB) = A)
1614, 15syl5reqr 2400 . . 3 (F:A–→BA = {x A C B})
17 rabid2 2789 . . 3 (A = {x A C B} ↔ x A C B)
1816, 17sylib 188 . 2 (F:A–→Bx A C B)
1913, 18impbii 180 1 (x A C BF:A–→B)
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   = wceq 1642   wcel 1710  {cab 2339  wral 2615  wrex 2616  {crab 2619   wss 3258  cima 4723  ccnv 4772  ran crn 4774   Fn wfn 4777  –→wf 4778   cmpt 5652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727  df-ima 4728  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-fv 4796  df-mpt 5653
This theorem is referenced by:  fmpti  5694  fmptd  5695  fmpt2x  5731  enprmaplem5  6081
  Copyright terms: Public domain W3C validator