| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > cbvaldva | GIF version | ||
| Description: Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| cbvaldva.1 | ⊢ ((φ ∧ x = y) → (ψ ↔ χ)) |
| Ref | Expression |
|---|---|
| cbvaldva | ⊢ (φ → (∀xψ ↔ ∀yχ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1619 | . 2 ⊢ Ⅎyφ | |
| 2 | nfvd 1620 | . 2 ⊢ (φ → Ⅎyψ) | |
| 3 | cbvaldva.1 | . . 3 ⊢ ((φ ∧ x = y) → (ψ ↔ χ)) | |
| 4 | 3 | ex 423 | . 2 ⊢ (φ → (x = y → (ψ ↔ χ))) |
| 5 | 1, 2, 4 | cbvald 2008 | 1 ⊢ (φ → (∀xψ ↔ ∀yχ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: cbvraldva2 2840 |
| Copyright terms: Public domain | W3C validator |