| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > cbvraldva2 | GIF version | ||
| Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| cbvraldva2.1 | ⊢ ((φ ∧ x = y) → (ψ ↔ χ)) |
| cbvraldva2.2 | ⊢ ((φ ∧ x = y) → A = B) |
| Ref | Expression |
|---|---|
| cbvraldva2 | ⊢ (φ → (∀x ∈ A ψ ↔ ∀y ∈ B χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 447 | . . . . 5 ⊢ ((φ ∧ x = y) → x = y) | |
| 2 | cbvraldva2.2 | . . . . 5 ⊢ ((φ ∧ x = y) → A = B) | |
| 3 | 1, 2 | eleq12d 2421 | . . . 4 ⊢ ((φ ∧ x = y) → (x ∈ A ↔ y ∈ B)) |
| 4 | cbvraldva2.1 | . . . 4 ⊢ ((φ ∧ x = y) → (ψ ↔ χ)) | |
| 5 | 3, 4 | imbi12d 311 | . . 3 ⊢ ((φ ∧ x = y) → ((x ∈ A → ψ) ↔ (y ∈ B → χ))) |
| 6 | 5 | cbvaldva 2010 | . 2 ⊢ (φ → (∀x(x ∈ A → ψ) ↔ ∀y(y ∈ B → χ))) |
| 7 | df-ral 2620 | . 2 ⊢ (∀x ∈ A ψ ↔ ∀x(x ∈ A → ψ)) | |
| 8 | df-ral 2620 | . 2 ⊢ (∀y ∈ B χ ↔ ∀y(y ∈ B → χ)) | |
| 9 | 6, 7, 8 | 3bitr4g 279 | 1 ⊢ (φ → (∀x ∈ A ψ ↔ ∀y ∈ B χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 = wceq 1642 ∈ wcel 1710 ∀wral 2615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-cleq 2346 df-clel 2349 df-ral 2620 |
| This theorem is referenced by: cbvraldva 2842 |
| Copyright terms: Public domain | W3C validator |