New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvexd | GIF version |
Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2016. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
cbvald.1 | ⊢ Ⅎyφ |
cbvald.2 | ⊢ (φ → Ⅎyψ) |
cbvald.3 | ⊢ (φ → (x = y → (ψ ↔ χ))) |
Ref | Expression |
---|---|
cbvexd | ⊢ (φ → (∃xψ ↔ ∃yχ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvald.1 | . . . 4 ⊢ Ⅎyφ | |
2 | cbvald.2 | . . . . 5 ⊢ (φ → Ⅎyψ) | |
3 | 2 | nfnd 1791 | . . . 4 ⊢ (φ → Ⅎy ¬ ψ) |
4 | cbvald.3 | . . . . 5 ⊢ (φ → (x = y → (ψ ↔ χ))) | |
5 | notbi 286 | . . . . 5 ⊢ ((ψ ↔ χ) ↔ (¬ ψ ↔ ¬ χ)) | |
6 | 4, 5 | syl6ib 217 | . . . 4 ⊢ (φ → (x = y → (¬ ψ ↔ ¬ χ))) |
7 | 1, 3, 6 | cbvald 2008 | . . 3 ⊢ (φ → (∀x ¬ ψ ↔ ∀y ¬ χ)) |
8 | 7 | notbid 285 | . 2 ⊢ (φ → (¬ ∀x ¬ ψ ↔ ¬ ∀y ¬ χ)) |
9 | df-ex 1542 | . 2 ⊢ (∃xψ ↔ ¬ ∀x ¬ ψ) | |
10 | df-ex 1542 | . 2 ⊢ (∃yχ ↔ ¬ ∀y ¬ χ) | |
11 | 8, 9, 10 | 3bitr4g 279 | 1 ⊢ (φ → (∃xψ ↔ ∃yχ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: cbvexdva 2011 vtoclgft 2906 dfid3 4769 |
Copyright terms: Public domain | W3C validator |