New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvex2v | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-Jul-1995.) |
Ref | Expression |
---|---|
cbval2v.1 | ⊢ ((x = z ∧ y = w) → (φ ↔ ψ)) |
Ref | Expression |
---|---|
cbvex2v | ⊢ (∃x∃yφ ↔ ∃z∃wψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎzφ | |
2 | nfv 1619 | . 2 ⊢ Ⅎwφ | |
3 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
4 | nfv 1619 | . 2 ⊢ Ⅎyψ | |
5 | cbval2v.1 | . 2 ⊢ ((x = z ∧ y = w) → (φ ↔ ψ)) | |
6 | 1, 2, 3, 4, 5 | cbvex2 2005 | 1 ⊢ (∃x∃yφ ↔ ∃z∃wψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: cbvex4v 2012 2mo 2282 2eu6 2289 |
Copyright terms: Public domain | W3C validator |