| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > cbvexvw | GIF version | ||
| Description: Change bound variable. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) |
| Ref | Expression |
|---|---|
| cbvalvw.1 | ⊢ (x = y → (φ ↔ ψ)) |
| Ref | Expression |
|---|---|
| cbvexvw | ⊢ (∃xφ ↔ ∃yψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalvw.1 | . . . . 5 ⊢ (x = y → (φ ↔ ψ)) | |
| 2 | 1 | notbid 285 | . . . 4 ⊢ (x = y → (¬ φ ↔ ¬ ψ)) |
| 3 | 2 | cbvalvw 1702 | . . 3 ⊢ (∀x ¬ φ ↔ ∀y ¬ ψ) |
| 4 | 3 | notbii 287 | . 2 ⊢ (¬ ∀x ¬ φ ↔ ¬ ∀y ¬ ψ) |
| 5 | df-ex 1542 | . 2 ⊢ (∃xφ ↔ ¬ ∀x ¬ φ) | |
| 6 | df-ex 1542 | . 2 ⊢ (∃yψ ↔ ¬ ∀y ¬ ψ) | |
| 7 | 4, 5, 6 | 3bitr4i 268 | 1 ⊢ (∃xφ ↔ ∃yψ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |