| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > cbviunv | GIF version | ||
| Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003.) |
| Ref | Expression |
|---|---|
| cbviunv.1 | ⊢ (x = y → B = C) |
| Ref | Expression |
|---|---|
| cbviunv | ⊢ ∪x ∈ A B = ∪y ∈ A C |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2490 | . 2 ⊢ ℲyB | |
| 2 | nfcv 2490 | . 2 ⊢ ℲxC | |
| 3 | cbviunv.1 | . 2 ⊢ (x = y → B = C) | |
| 4 | 1, 2, 3 | cbviun 4004 | 1 ⊢ ∪x ∈ A B = ∪y ∈ A C |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1642 ∪ciun 3970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-iun 3972 |
| This theorem is referenced by: iunxdif2 4015 |
| Copyright terms: Public domain | W3C validator |