New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvmo | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 9-Mar-1995.) (Revised by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
cbvmo.1 | ⊢ Ⅎyφ |
cbvmo.2 | ⊢ Ⅎxψ |
cbvmo.3 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
cbvmo | ⊢ (∃*xφ ↔ ∃*yψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvmo.1 | . . . 4 ⊢ Ⅎyφ | |
2 | cbvmo.2 | . . . 4 ⊢ Ⅎxψ | |
3 | cbvmo.3 | . . . 4 ⊢ (x = y → (φ ↔ ψ)) | |
4 | 1, 2, 3 | cbvex 1985 | . . 3 ⊢ (∃xφ ↔ ∃yψ) |
5 | 1, 2, 3 | cbveu 2224 | . . 3 ⊢ (∃!xφ ↔ ∃!yψ) |
6 | 4, 5 | imbi12i 316 | . 2 ⊢ ((∃xφ → ∃!xφ) ↔ (∃yψ → ∃!yψ)) |
7 | df-mo 2209 | . 2 ⊢ (∃*xφ ↔ (∃xφ → ∃!xφ)) | |
8 | df-mo 2209 | . 2 ⊢ (∃*yψ ↔ (∃yψ → ∃!yψ)) | |
9 | 6, 7, 8 | 3bitr4i 268 | 1 ⊢ (∃*xφ ↔ ∃*yψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∃wex 1541 Ⅎwnf 1544 ∃!weu 2204 ∃*wmo 2205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
This theorem is referenced by: dffun6f 5124 |
Copyright terms: Public domain | W3C validator |