NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cbvex GIF version

Theorem cbvex 1985
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
cbvex.1 yφ
cbvex.2 xψ
cbvex.3 (x = y → (φψ))
Assertion
Ref Expression
cbvex (xφyψ)

Proof of Theorem cbvex
StepHypRef Expression
1 cbvex.1 . . . . 5 yφ
21nfn 1793 . . . 4 y ¬ φ
3 cbvex.2 . . . . 5 xψ
43nfn 1793 . . . 4 x ¬ ψ
5 cbvex.3 . . . . 5 (x = y → (φψ))
65notbid 285 . . . 4 (x = y → (¬ φ ↔ ¬ ψ))
72, 4, 6cbval 1984 . . 3 (x ¬ φy ¬ ψ)
87notbii 287 . 2 x ¬ φ ↔ ¬ y ¬ ψ)
9 df-ex 1542 . 2 (xφ ↔ ¬ x ¬ φ)
10 df-ex 1542 . 2 (yψ ↔ ¬ y ¬ ψ)
118, 9, 103bitr4i 268 1 (xφyψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176  wal 1540  wex 1541  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545
This theorem is referenced by:  cbvexv  2003  cbvex2  2005  exsb  2130  euf  2210  mo  2226  cbvmo  2241  mopick  2266  clelab  2474  issetf  2865  eqvincf  2968  rexab2  3004  euabsn  3793  eluniab  3904  cbvopab1  4633  cbvopab2  4634  cbvopab1s  4635  opeliunxp  4821  dfdmf  4906  dfrnf  4963  cbvoprab1  5568  cbvoprab2  5569
  Copyright terms: Public domain W3C validator