New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvex | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
cbvex.1 | ⊢ Ⅎyφ |
cbvex.2 | ⊢ Ⅎxψ |
cbvex.3 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
cbvex | ⊢ (∃xφ ↔ ∃yψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvex.1 | . . . . 5 ⊢ Ⅎyφ | |
2 | 1 | nfn 1793 | . . . 4 ⊢ Ⅎy ¬ φ |
3 | cbvex.2 | . . . . 5 ⊢ Ⅎxψ | |
4 | 3 | nfn 1793 | . . . 4 ⊢ Ⅎx ¬ ψ |
5 | cbvex.3 | . . . . 5 ⊢ (x = y → (φ ↔ ψ)) | |
6 | 5 | notbid 285 | . . . 4 ⊢ (x = y → (¬ φ ↔ ¬ ψ)) |
7 | 2, 4, 6 | cbval 1984 | . . 3 ⊢ (∀x ¬ φ ↔ ∀y ¬ ψ) |
8 | 7 | notbii 287 | . 2 ⊢ (¬ ∀x ¬ φ ↔ ¬ ∀y ¬ ψ) |
9 | df-ex 1542 | . 2 ⊢ (∃xφ ↔ ¬ ∀x ¬ φ) | |
10 | df-ex 1542 | . 2 ⊢ (∃yψ ↔ ¬ ∀y ¬ ψ) | |
11 | 8, 9, 10 | 3bitr4i 268 | 1 ⊢ (∃xφ ↔ ∃yψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: cbvexv 2003 cbvex2 2005 exsb 2130 euf 2210 mo 2226 cbvmo 2241 mopick 2266 clelab 2474 issetf 2865 eqvincf 2968 rexab2 3004 euabsn 3793 eluniab 3904 cbvopab1 4633 cbvopab2 4634 cbvopab1s 4635 opeliunxp 4821 dfdmf 4906 dfrnf 4963 cbvoprab1 5568 cbvoprab2 5569 |
Copyright terms: Public domain | W3C validator |