New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbveu | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 25-Nov-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
cbveu.1 | ⊢ Ⅎyφ |
cbveu.2 | ⊢ Ⅎxψ |
cbveu.3 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
cbveu | ⊢ (∃!xφ ↔ ∃!yψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbveu.1 | . . 3 ⊢ Ⅎyφ | |
2 | 1 | sb8eu 2222 | . 2 ⊢ (∃!xφ ↔ ∃!y[y / x]φ) |
3 | cbveu.2 | . . . 4 ⊢ Ⅎxψ | |
4 | cbveu.3 | . . . 4 ⊢ (x = y → (φ ↔ ψ)) | |
5 | 3, 4 | sbie 2038 | . . 3 ⊢ ([y / x]φ ↔ ψ) |
6 | 5 | eubii 2213 | . 2 ⊢ (∃!y[y / x]φ ↔ ∃!yψ) |
7 | 2, 6 | bitri 240 | 1 ⊢ (∃!xφ ↔ ∃!yψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 Ⅎwnf 1544 [wsb 1648 ∃!weu 2204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 |
This theorem is referenced by: cbvmo 2241 cbvreu 2834 cbvreucsf 3201 tz6.12-1 5345 |
Copyright terms: Public domain | W3C validator |