New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ceqsalv | GIF version |
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
ceqsalv.1 | ⊢ A ∈ V |
ceqsalv.2 | ⊢ (x = A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
ceqsalv | ⊢ (∀x(x = A → φ) ↔ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
2 | ceqsalv.1 | . 2 ⊢ A ∈ V | |
3 | ceqsalv.2 | . 2 ⊢ (x = A → (φ ↔ ψ)) | |
4 | 1, 2, 3 | ceqsal 2885 | 1 ⊢ (∀x(x = A → φ) ↔ ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
This theorem is referenced by: clel2 2976 clel4 2979 reu8 3033 eqpw1 4163 pw111 4171 ssrelk 4212 eqrelk 4213 elp6 4264 sikexlem 4296 insklem 4305 nnadjoin 4521 nnadjoinpw 4522 nnpweq 4524 tfinnn 4535 raliunxp 4824 ssopr 4847 intirr 5030 fv3 5342 funimass4 5369 dfnnc3 5886 spacind 6288 |
Copyright terms: Public domain | W3C validator |