Proof of Theorem equvini
Step | Hyp | Ref
| Expression |
1 | | equcomi 1679 |
. . . . . 6
⊢ (z = x →
x = z) |
2 | 1 | alimi 1559 |
. . . . 5
⊢ (∀z z = x →
∀z
x = z) |
3 | | a9e 1951 |
. . . . 5
⊢ ∃z z = y |
4 | 2, 3 | jctir 524 |
. . . 4
⊢ (∀z z = x →
(∀z
x = z
∧ ∃z z = y)) |
5 | 4 | a1d 22 |
. . 3
⊢ (∀z z = x →
(x = y
→ (∀z x = z ∧ ∃z z = y))) |
6 | | 19.29 1596 |
. . 3
⊢ ((∀z x = z ∧ ∃z z = y) → ∃z(x = z ∧ z = y)) |
7 | 5, 6 | syl6 29 |
. 2
⊢ (∀z z = x →
(x = y
→ ∃z(x = z ∧ z = y))) |
8 | | a9e 1951 |
. . . . . 6
⊢ ∃z z = x |
9 | 1 | eximi 1576 |
. . . . . 6
⊢ (∃z z = x →
∃z
x = z) |
10 | 8, 9 | ax-mp 5 |
. . . . 5
⊢ ∃z x = z |
11 | 10 | 2a1i 24 |
. . . 4
⊢ (∀z z = y →
(x = y
→ ∃z x = z)) |
12 | 11 | anc2ri 541 |
. . 3
⊢ (∀z z = y →
(x = y
→ (∃z x = z ∧ ∀z z = y))) |
13 | | 19.29r 1597 |
. . 3
⊢ ((∃z x = z ∧ ∀z z = y) → ∃z(x = z ∧ z = y)) |
14 | 12, 13 | syl6 29 |
. 2
⊢ (∀z z = y →
(x = y
→ ∃z(x = z ∧ z = y))) |
15 | | ioran 476 |
. . 3
⊢ (¬ (∀z z = x ∨ ∀z z = y) ↔ (¬ ∀z z = x ∧ ¬ ∀z z = y)) |
16 | | nfeqf 1958 |
. . . 4
⊢ ((¬ ∀z z = x ∧ ¬ ∀z z = y) →
Ⅎz x = y) |
17 | | ax-8 1675 |
. . . . . 6
⊢ (x = z →
(x = y
→ z = y)) |
18 | 17 | anc2li 540 |
. . . . 5
⊢ (x = z →
(x = y
→ (x = z ∧ z = y))) |
19 | 18 | equcoms 1681 |
. . . 4
⊢ (z = x →
(x = y
→ (x = z ∧ z = y))) |
20 | 16, 19 | spimed 1977 |
. . 3
⊢ ((¬ ∀z z = x ∧ ¬ ∀z z = y) →
(x = y
→ ∃z(x = z ∧ z = y))) |
21 | 15, 20 | sylbi 187 |
. 2
⊢ (¬ (∀z z = x ∨ ∀z z = y) → (x =
y → ∃z(x = z ∧ z = y))) |
22 | 7, 14, 21 | ecase3 907 |
1
⊢ (x = y →
∃z(x = z ∧ z = y)) |