New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > biimpd | GIF version |
Description: Deduce an implication from a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
biimpd.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
biimpd | ⊢ (φ → (ψ → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpd.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
2 | bi1 178 | . 2 ⊢ ((ψ ↔ χ) → (ψ → χ)) | |
3 | 1, 2 | syl 15 | 1 ⊢ (φ → (ψ → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: mpbid 201 sylibd 205 sylbid 206 mpbidi 207 syl5ib 210 syl6bi 219 ibi 232 con4bid 284 mtbird 292 mtbiri 294 imbi1d 308 pm5.21im 338 biimpa 470 exintr 1614 spfw 1691 spw 1694 cbvalw 1701 cbvalvw 1702 alcomiw 1704 19.9d 1782 19.23t 1800 dvelimv 1939 dral1 1965 cbval 1984 chvar 1986 spv 1998 sbequi 2059 dral1-o 2154 2eu3 2286 eqrdav 2352 cleqh 2450 ralcom2 2776 ceqsalg 2884 vtoclf 2909 vtocl2 2911 vtocl3 2912 spcdv 2938 rspcdv 2959 elabgt 2983 sbeqalb 3099 ssunsn2 3866 opkthg 4132 iotaval 4351 nnsucelr 4429 tfin11 4494 vfinspss 4552 0cnelphi 4598 iss 5001 tz6.12-1 5345 chfnrn 5400 elpreima 5408 ffnfv 5428 f1elima 5475 ndmovg 5614 enmap2lem3 6066 enmap1lem3 6072 enprmaplem3 6079 enprmaplem5 6081 nnltp1c 6263 addccan2nc 6266 nnc3n3p1 6279 |
Copyright terms: Public domain | W3C validator |