New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > biimpd | GIF version |
Description: Deduce an implication from a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
biimpd.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
biimpd | ⊢ (φ → (ψ → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpd.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
2 | bi1 178 | . 2 ⊢ ((ψ ↔ χ) → (ψ → χ)) | |
3 | 1, 2 | syl 15 | 1 ⊢ (φ → (ψ → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: mpbid 201 sylibd 205 sylbid 206 mpbidi 207 syl5ib 210 syl6bi 219 ibi 232 con4bid 284 mtbird 292 mtbiri 294 imbi1d 308 pm5.21im 338 biimpa 470 exintr 1614 spfw 1691 spw 1694 cbvalw 1701 cbvalvw 1702 alcomiw 1704 19.9d 1782 19.23t 1800 dvelimv 1939 dral1 1965 cbval 1984 chvar 1986 spv 1998 sbequi 2059 dral1-o 2154 2eu3 2286 eqrdav 2352 cleqh 2450 ralcom2 2775 ceqsalg 2883 vtoclf 2908 vtocl2 2910 vtocl3 2911 spcdv 2937 rspcdv 2958 elabgt 2982 sbeqalb 3098 ssunsn2 3865 opkthg 4131 iotaval 4350 nnsucelr 4428 tfin11 4493 vfinspss 4551 0cnelphi 4597 iss 5000 tz6.12-1 5344 chfnrn 5399 elpreima 5407 ffnfv 5427 f1elima 5474 ndmovg 5613 enmap2lem3 6065 enmap1lem3 6071 enprmaplem3 6078 enprmaplem5 6080 nnltp1c 6262 addccan2nc 6265 nnc3n3p1 6278 |
Copyright terms: Public domain | W3C validator |