| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > difeq2 | GIF version | ||
| Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difeq2 | ⊢ (A = B → (C ∖ A) = (C ∖ B)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compleq 3244 | . . . 4 ⊢ (A = B → ∼ A = ∼ B) | |
| 2 | 1 | nineq2d 3242 | . . 3 ⊢ (A = B → (C ⩃ ∼ A) = (C ⩃ ∼ B)) |
| 3 | 2 | compleqd 3246 | . 2 ⊢ (A = B → ∼ (C ⩃ ∼ A) = ∼ (C ⩃ ∼ B)) |
| 4 | df-dif 3216 | . . 3 ⊢ (C ∖ A) = (C ∩ ∼ A) | |
| 5 | df-in 3214 | . . 3 ⊢ (C ∩ ∼ A) = ∼ (C ⩃ ∼ A) | |
| 6 | 4, 5 | eqtri 2373 | . 2 ⊢ (C ∖ A) = ∼ (C ⩃ ∼ A) |
| 7 | df-dif 3216 | . . 3 ⊢ (C ∖ B) = (C ∩ ∼ B) | |
| 8 | df-in 3214 | . . 3 ⊢ (C ∩ ∼ B) = ∼ (C ⩃ ∼ B) | |
| 9 | 7, 8 | eqtri 2373 | . 2 ⊢ (C ∖ B) = ∼ (C ⩃ ∼ B) |
| 10 | 3, 6, 9 | 3eqtr4g 2410 | 1 ⊢ (A = B → (C ∖ A) = (C ∖ B)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1642 ⩃ cnin 3205 ∼ ccompl 3206 ∖ cdif 3207 ∩ cin 3209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 |
| This theorem is referenced by: symdifeq1 3249 symdifeq2 3250 difeq12 3381 difeq2i 3383 difeq2d 3386 ssdifeq0 3633 |
| Copyright terms: Public domain | W3C validator |