![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > difeq2 | GIF version |
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeq2 | ⊢ (A = B → (C ∖ A) = (C ∖ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | compleq 3243 | . . . 4 ⊢ (A = B → ∼ A = ∼ B) | |
2 | 1 | nineq2d 3241 | . . 3 ⊢ (A = B → (C ⩃ ∼ A) = (C ⩃ ∼ B)) |
3 | 2 | compleqd 3245 | . 2 ⊢ (A = B → ∼ (C ⩃ ∼ A) = ∼ (C ⩃ ∼ B)) |
4 | df-dif 3215 | . . 3 ⊢ (C ∖ A) = (C ∩ ∼ A) | |
5 | df-in 3213 | . . 3 ⊢ (C ∩ ∼ A) = ∼ (C ⩃ ∼ A) | |
6 | 4, 5 | eqtri 2373 | . 2 ⊢ (C ∖ A) = ∼ (C ⩃ ∼ A) |
7 | df-dif 3215 | . . 3 ⊢ (C ∖ B) = (C ∩ ∼ B) | |
8 | df-in 3213 | . . 3 ⊢ (C ∩ ∼ B) = ∼ (C ⩃ ∼ B) | |
9 | 7, 8 | eqtri 2373 | . 2 ⊢ (C ∖ B) = ∼ (C ⩃ ∼ B) |
10 | 3, 6, 9 | 3eqtr4g 2410 | 1 ⊢ (A = B → (C ∖ A) = (C ∖ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ⩃ cnin 3204 ∼ ccompl 3205 ∖ cdif 3206 ∩ cin 3208 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-dif 3215 |
This theorem is referenced by: symdifeq1 3248 symdifeq2 3249 difeq12 3380 difeq2i 3382 difeq2d 3385 ssdifeq0 3632 |
Copyright terms: Public domain | W3C validator |