Proof of Theorem nnsucelrlem3
Step | Hyp | Ref
| Expression |
1 | | indir 3504 |
. . . . 5
⊢ ((B ∪ {Y})
∩ ∼ {Y}) = ((B ∩ ∼ {Y}) ∪ ({Y}
∩ ∼ {Y})) |
2 | | df-dif 3216 |
. . . . . . . 8
⊢ (B ∖ {Y}) = (B ∩
∼ {Y}) |
3 | 2 | eqcomi 2357 |
. . . . . . 7
⊢ (B ∩ ∼ {Y}) = (B ∖ {Y}) |
4 | | incompl 4074 |
. . . . . . 7
⊢ ({Y} ∩ ∼ {Y}) = ∅ |
5 | 3, 4 | uneq12i 3417 |
. . . . . 6
⊢ ((B ∩ ∼ {Y}) ∪ ({Y}
∩ ∼ {Y})) = ((B ∖ {Y}) ∪ ∅) |
6 | | un0 3576 |
. . . . . 6
⊢ ((B ∖ {Y}) ∪ ∅) =
(B ∖
{Y}) |
7 | 5, 6 | eqtri 2373 |
. . . . 5
⊢ ((B ∩ ∼ {Y}) ∪ ({Y}
∩ ∼ {Y})) = (B ∖ {Y}) |
8 | 1, 7 | eqtri 2373 |
. . . 4
⊢ ((B ∪ {Y})
∩ ∼ {Y}) = (B ∖ {Y}) |
9 | | difsn 3846 |
. . . . 5
⊢ (¬ Y ∈ B → (B
∖ {Y}) =
B) |
10 | 9 | 3ad2ant3 978 |
. . . 4
⊢ ((X ≠ Y ∧ (A ∪
{X}) = (B ∪ {Y})
∧ ¬ Y
∈ B)
→ (B ∖ {Y}) =
B) |
11 | 8, 10 | syl5req 2398 |
. . 3
⊢ ((X ≠ Y ∧ (A ∪
{X}) = (B ∪ {Y})
∧ ¬ Y
∈ B)
→ B = ((B ∪ {Y})
∩ ∼ {Y})) |
12 | | simp2 956 |
. . . 4
⊢ ((X ≠ Y ∧ (A ∪
{X}) = (B ∪ {Y})
∧ ¬ Y
∈ B)
→ (A ∪ {X}) = (B ∪
{Y})) |
13 | | df-ne 2519 |
. . . . . . . 8
⊢ (X ≠ Y ↔
¬ X = Y) |
14 | 13 | biimpi 186 |
. . . . . . 7
⊢ (X ≠ Y →
¬ X = Y) |
15 | 14 | 3ad2ant1 976 |
. . . . . 6
⊢ ((X ≠ Y ∧ (A ∪
{X}) = (B ∪ {Y})
∧ ¬ Y
∈ B)
→ ¬ X = Y) |
16 | | nnsucelrlem3.1 |
. . . . . . . . 9
⊢ X ∈
V |
17 | 16 | elcompl 3226 |
. . . . . . . 8
⊢ (X ∈ ∼
{Y} ↔ ¬ X ∈ {Y}) |
18 | 16 | elsnc 3757 |
. . . . . . . 8
⊢ (X ∈ {Y} ↔ X =
Y) |
19 | 17, 18 | xchbinx 301 |
. . . . . . 7
⊢ (X ∈ ∼
{Y} ↔ ¬ X = Y) |
20 | 16 | snss 3839 |
. . . . . . 7
⊢ (X ∈ ∼
{Y} ↔ {X} ⊆ ∼
{Y}) |
21 | 19, 20 | bitr3i 242 |
. . . . . 6
⊢ (¬ X = Y ↔
{X} ⊆
∼ {Y}) |
22 | 15, 21 | sylib 188 |
. . . . 5
⊢ ((X ≠ Y ∧ (A ∪
{X}) = (B ∪ {Y})
∧ ¬ Y
∈ B)
→ {X} ⊆ ∼ {Y}) |
23 | | ssequn2 3437 |
. . . . 5
⊢ ({X} ⊆ ∼
{Y} ↔ ( ∼ {Y} ∪ {X}) =
∼ {Y}) |
24 | 22, 23 | sylib 188 |
. . . 4
⊢ ((X ≠ Y ∧ (A ∪
{X}) = (B ∪ {Y})
∧ ¬ Y
∈ B)
→ ( ∼ {Y} ∪ {X}) = ∼ {Y}) |
25 | 12, 24 | ineq12d 3459 |
. . 3
⊢ ((X ≠ Y ∧ (A ∪
{X}) = (B ∪ {Y})
∧ ¬ Y
∈ B)
→ ((A ∪ {X}) ∩ ( ∼ {Y} ∪ {X})) =
((B ∪ {Y}) ∩ ∼ {Y})) |
26 | 11, 25 | eqtr4d 2388 |
. 2
⊢ ((X ≠ Y ∧ (A ∪
{X}) = (B ∪ {Y})
∧ ¬ Y
∈ B)
→ B = ((A ∪ {X})
∩ ( ∼ {Y} ∪ {X}))) |
27 | | df-dif 3216 |
. . . 4
⊢ (A ∖ {Y}) = (A ∩
∼ {Y}) |
28 | 27 | uneq1i 3415 |
. . 3
⊢ ((A ∖ {Y}) ∪ {X}) =
((A ∩ ∼ {Y}) ∪ {X}) |
29 | | undir 3505 |
. . 3
⊢ ((A ∩ ∼ {Y}) ∪ {X}) =
((A ∪ {X}) ∩ ( ∼ {Y} ∪ {X})) |
30 | 28, 29 | eqtri 2373 |
. 2
⊢ ((A ∖ {Y}) ∪ {X}) =
((A ∪ {X}) ∩ ( ∼ {Y} ∪ {X})) |
31 | 26, 30 | syl6eqr 2403 |
1
⊢ ((X ≠ Y ∧ (A ∪
{X}) = (B ∪ {Y})
∧ ¬ Y
∈ B)
→ B = ((A ∖ {Y}) ∪ {X})) |