NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nnsucelrlem3 GIF version

Theorem nnsucelrlem3 4427
Description: Lemma for nnsucelr 4429. Rearrange union and difference for a particular group of classes. (Contributed by SF, 15-Jan-2015.)
Hypothesis
Ref Expression
nnsucelrlem3.1 X V
Assertion
Ref Expression
nnsucelrlem3 ((XY (A ∪ {X}) = (B ∪ {Y}) ¬ Y B) → B = ((A {Y}) ∪ {X}))

Proof of Theorem nnsucelrlem3
StepHypRef Expression
1 indir 3504 . . . . 5 ((B ∪ {Y}) ∩ ∼ {Y}) = ((B ∩ ∼ {Y}) ∪ ({Y} ∩ ∼ {Y}))
2 df-dif 3216 . . . . . . . 8 (B {Y}) = (B ∩ ∼ {Y})
32eqcomi 2357 . . . . . . 7 (B ∩ ∼ {Y}) = (B {Y})
4 incompl 4074 . . . . . . 7 ({Y} ∩ ∼ {Y}) =
53, 4uneq12i 3417 . . . . . 6 ((B ∩ ∼ {Y}) ∪ ({Y} ∩ ∼ {Y})) = ((B {Y}) ∪ )
6 un0 3576 . . . . . 6 ((B {Y}) ∪ ) = (B {Y})
75, 6eqtri 2373 . . . . 5 ((B ∩ ∼ {Y}) ∪ ({Y} ∩ ∼ {Y})) = (B {Y})
81, 7eqtri 2373 . . . 4 ((B ∪ {Y}) ∩ ∼ {Y}) = (B {Y})
9 difsn 3846 . . . . 5 Y B → (B {Y}) = B)
1093ad2ant3 978 . . . 4 ((XY (A ∪ {X}) = (B ∪ {Y}) ¬ Y B) → (B {Y}) = B)
118, 10syl5req 2398 . . 3 ((XY (A ∪ {X}) = (B ∪ {Y}) ¬ Y B) → B = ((B ∪ {Y}) ∩ ∼ {Y}))
12 simp2 956 . . . 4 ((XY (A ∪ {X}) = (B ∪ {Y}) ¬ Y B) → (A ∪ {X}) = (B ∪ {Y}))
13 df-ne 2519 . . . . . . . 8 (XY ↔ ¬ X = Y)
1413biimpi 186 . . . . . . 7 (XY → ¬ X = Y)
15143ad2ant1 976 . . . . . 6 ((XY (A ∪ {X}) = (B ∪ {Y}) ¬ Y B) → ¬ X = Y)
16 nnsucelrlem3.1 . . . . . . . . 9 X V
1716elcompl 3226 . . . . . . . 8 (X ∼ {Y} ↔ ¬ X {Y})
1816elsnc 3757 . . . . . . . 8 (X {Y} ↔ X = Y)
1917, 18xchbinx 301 . . . . . . 7 (X ∼ {Y} ↔ ¬ X = Y)
2016snss 3839 . . . . . . 7 (X ∼ {Y} ↔ {X} ∼ {Y})
2119, 20bitr3i 242 . . . . . 6 X = Y ↔ {X} ∼ {Y})
2215, 21sylib 188 . . . . 5 ((XY (A ∪ {X}) = (B ∪ {Y}) ¬ Y B) → {X} ∼ {Y})
23 ssequn2 3437 . . . . 5 ({X} ∼ {Y} ↔ ( ∼ {Y} ∪ {X}) = ∼ {Y})
2422, 23sylib 188 . . . 4 ((XY (A ∪ {X}) = (B ∪ {Y}) ¬ Y B) → ( ∼ {Y} ∪ {X}) = ∼ {Y})
2512, 24ineq12d 3459 . . 3 ((XY (A ∪ {X}) = (B ∪ {Y}) ¬ Y B) → ((A ∪ {X}) ∩ ( ∼ {Y} ∪ {X})) = ((B ∪ {Y}) ∩ ∼ {Y}))
2611, 25eqtr4d 2388 . 2 ((XY (A ∪ {X}) = (B ∪ {Y}) ¬ Y B) → B = ((A ∪ {X}) ∩ ( ∼ {Y} ∪ {X})))
27 df-dif 3216 . . . 4 (A {Y}) = (A ∩ ∼ {Y})
2827uneq1i 3415 . . 3 ((A {Y}) ∪ {X}) = ((A ∩ ∼ {Y}) ∪ {X})
29 undir 3505 . . 3 ((A ∩ ∼ {Y}) ∪ {X}) = ((A ∪ {X}) ∩ ( ∼ {Y} ∪ {X}))
3028, 29eqtri 2373 . 2 ((A {Y}) ∪ {X}) = ((A ∪ {X}) ∩ ( ∼ {Y} ∪ {X}))
3126, 30syl6eqr 2403 1 ((XY (A ∪ {X}) = (B ∪ {Y}) ¬ Y B) → B = ((A {Y}) ∪ {X}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   w3a 934   = wceq 1642   wcel 1710  wne 2517  Vcvv 2860  ccompl 3206   cdif 3207  cun 3208  cin 3209   wss 3258  c0 3551  {csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742
This theorem is referenced by:  nnsucelr  4429
  Copyright terms: Public domain W3C validator