NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  compldif GIF version

Theorem compldif 4070
Description: Complement in terms of difference. (Contributed by SF, 2-Jan-2018.)
Assertion
Ref Expression
compldif A = (V A)

Proof of Theorem compldif
StepHypRef Expression
1 df-dif 3216 . 2 (V A) = (V ∩ ∼ A)
2 incom 3449 . 2 (V ∩ ∼ A) = ( ∼ A ∩ V)
3 inv1 3578 . 2 ( ∼ A ∩ V) = ∼ A
41, 2, 33eqtrri 2378 1 A = (V A)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  Vcvv 2860  ccompl 3206   cdif 3207  cin 3209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260
This theorem is referenced by:  complV  4071
  Copyright terms: Public domain W3C validator