NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  difexg GIF version

Theorem difexg 4103
Description: The difference of two sets is a set. (Contributed by SF, 12-Jan-2015.)
Assertion
Ref Expression
difexg ((A V B W) → (A B) V)

Proof of Theorem difexg
StepHypRef Expression
1 df-dif 3216 . 2 (A B) = (A ∩ ∼ B)
2 complexg 4100 . . 3 (B W → ∼ B V)
3 inexg 4101 . . 3 ((A V B V) → (A ∩ ∼ B) V)
42, 3sylan2 460 . 2 ((A V B W) → (A ∩ ∼ B) V)
51, 4syl5eqel 2437 1 ((A V B W) → (A B) V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   wcel 1710  Vcvv 2860  ccompl 3206   cdif 3207  cin 3209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216
This theorem is referenced by:  symdifexg  4104  difex  4108  imagekexg  4312  pwexg  4329  fullfunexg  5860  fnfreclem1  6318
  Copyright terms: Public domain W3C validator