New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eldif | GIF version |
Description: Membership in difference. (Contributed by SF, 10-Jan-2015.) |
Ref | Expression |
---|---|
eldif | ⊢ (A ∈ (B ∖ C) ↔ (A ∈ B ∧ ¬ A ∈ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dif 3216 | . . 3 ⊢ (B ∖ C) = (B ∩ ∼ C) | |
2 | 1 | eleq2i 2417 | . 2 ⊢ (A ∈ (B ∖ C) ↔ A ∈ (B ∩ ∼ C)) |
3 | elin 3220 | . 2 ⊢ (A ∈ (B ∩ ∼ C) ↔ (A ∈ B ∧ A ∈ ∼ C)) | |
4 | elcomplg 3219 | . . 3 ⊢ (A ∈ B → (A ∈ ∼ C ↔ ¬ A ∈ C)) | |
5 | 4 | pm5.32i 618 | . 2 ⊢ ((A ∈ B ∧ A ∈ ∼ C) ↔ (A ∈ B ∧ ¬ A ∈ C)) |
6 | 2, 3, 5 | 3bitri 262 | 1 ⊢ (A ∈ (B ∖ C) ↔ (A ∈ B ∧ ¬ A ∈ C)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∧ wa 358 ∈ wcel 1710 ∼ ccompl 3206 ∖ cdif 3207 ∩ cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 |
This theorem is referenced by: dfdif2 3223 elsymdif 3224 difeqri 3388 eldifi 3389 eldifn 3390 neldif 3392 difdif 3393 ddif 3399 ssconb 3400 sscon 3401 ssdif 3402 dfss4 3490 dfun2 3491 dfin2 3492 difin 3493 indifdir 3512 undif3 3516 difin2 3517 symdif2 3521 dfnul2 3553 reldisj 3595 disj3 3596 undif4 3608 ssdif0 3610 pssnel 3616 difin0ss 3617 inssdif0 3618 inundif 3629 ssundif 3634 eldifsn 3840 difprsnss 3847 iundif2 4034 iindif2 4036 opkelimagekg 4272 dfpw2 4328 dfaddc2 4382 dfnnc2 4396 nnsucelrlem1 4425 nnsucelr 4429 ltfinex 4465 ssfin 4471 eqpw1relk 4480 ncfinraiselem2 4481 ncfinlowerlem1 4483 eqtfinrelk 4487 evenodddisjlem1 4516 nnadjoinlem1 4520 nnpweqlem1 4523 sfintfinlem1 4532 tfinnnlem1 4534 spfinex 4538 brdif 4695 cnvdif 5035 imadif 5172 releqmpt2 5810 funsex 5829 transex 5911 antisymex 5913 connexex 5914 foundex 5915 extex 5916 symex 5917 2p1e3c 6157 nchoicelem11 6300 nchoicelem16 6305 fnfreclem1 6318 |
Copyright terms: Public domain | W3C validator |