New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  difeq1 GIF version

Theorem difeq1 3246
 Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difeq1 (A = B → (A C) = (B C))

Proof of Theorem difeq1
StepHypRef Expression
1 nineq1 3234 . . 3 (A = B → (A ⩃ ∼ C) = (B ⩃ ∼ C))
21compleqd 3245 . 2 (A = B → ∼ (A ⩃ ∼ C) = ∼ (B ⩃ ∼ C))
3 df-dif 3215 . . 3 (A C) = (A ∩ ∼ C)
4 df-in 3213 . . 3 (A ∩ ∼ C) = ∼ (A ⩃ ∼ C)
53, 4eqtri 2373 . 2 (A C) = ∼ (A ⩃ ∼ C)
6 df-dif 3215 . . 3 (B C) = (B ∩ ∼ C)
7 df-in 3213 . . 3 (B ∩ ∼ C) = ∼ (B ⩃ ∼ C)
86, 7eqtri 2373 . 2 (B C) = ∼ (B ⩃ ∼ C)
92, 5, 83eqtr4g 2410 1 (A = B → (A C) = (B C))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1642   ⩃ cnin 3204   ∼ ccompl 3205   ∖ cdif 3206   ∩ cin 3208 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-dif 3215 This theorem is referenced by:  symdifeq1  3248  symdifeq2  3249  difeq12  3380  difeq1i  3381  difeq1d  3384  uneqdifeq  3638  adj11  3889
 Copyright terms: Public domain W3C validator