New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > difeq1 | GIF version |
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeq1 | ⊢ (A = B → (A ∖ C) = (B ∖ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nineq1 3235 | . . 3 ⊢ (A = B → (A ⩃ ∼ C) = (B ⩃ ∼ C)) | |
2 | 1 | compleqd 3246 | . 2 ⊢ (A = B → ∼ (A ⩃ ∼ C) = ∼ (B ⩃ ∼ C)) |
3 | df-dif 3216 | . . 3 ⊢ (A ∖ C) = (A ∩ ∼ C) | |
4 | df-in 3214 | . . 3 ⊢ (A ∩ ∼ C) = ∼ (A ⩃ ∼ C) | |
5 | 3, 4 | eqtri 2373 | . 2 ⊢ (A ∖ C) = ∼ (A ⩃ ∼ C) |
6 | df-dif 3216 | . . 3 ⊢ (B ∖ C) = (B ∩ ∼ C) | |
7 | df-in 3214 | . . 3 ⊢ (B ∩ ∼ C) = ∼ (B ⩃ ∼ C) | |
8 | 6, 7 | eqtri 2373 | . 2 ⊢ (B ∖ C) = ∼ (B ⩃ ∼ C) |
9 | 2, 5, 8 | 3eqtr4g 2410 | 1 ⊢ (A = B → (A ∖ C) = (B ∖ C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ⩃ cnin 3205 ∼ ccompl 3206 ∖ cdif 3207 ∩ cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 |
This theorem is referenced by: symdifeq1 3249 symdifeq2 3250 difeq12 3381 difeq1i 3382 difeq1d 3385 uneqdifeq 3639 adj11 3890 |
Copyright terms: Public domain | W3C validator |