New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > psstr | GIF version |
Description: Transitive law for proper subclass. Theorem 9 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
psstr | ⊢ ((A ⊊ B ∧ B ⊊ C) → A ⊊ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssss 3365 | . . 3 ⊢ (A ⊊ B → A ⊆ B) | |
2 | pssss 3365 | . . 3 ⊢ (B ⊊ C → B ⊆ C) | |
3 | 1, 2 | sylan9ss 3286 | . 2 ⊢ ((A ⊊ B ∧ B ⊊ C) → A ⊆ C) |
4 | pssn2lp 3371 | . . . 4 ⊢ ¬ (C ⊊ B ∧ B ⊊ C) | |
5 | psseq1 3357 | . . . . 5 ⊢ (A = C → (A ⊊ B ↔ C ⊊ B)) | |
6 | 5 | anbi1d 685 | . . . 4 ⊢ (A = C → ((A ⊊ B ∧ B ⊊ C) ↔ (C ⊊ B ∧ B ⊊ C))) |
7 | 4, 6 | mtbiri 294 | . . 3 ⊢ (A = C → ¬ (A ⊊ B ∧ B ⊊ C)) |
8 | 7 | con2i 112 | . 2 ⊢ ((A ⊊ B ∧ B ⊊ C) → ¬ A = C) |
9 | dfpss2 3355 | . 2 ⊢ (A ⊊ C ↔ (A ⊆ C ∧ ¬ A = C)) | |
10 | 3, 8, 9 | sylanbrc 645 | 1 ⊢ ((A ⊊ B ∧ B ⊊ C) → A ⊊ C) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 = wceq 1642 ⊆ wss 3258 ⊊ wpss 3259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-pss 3262 |
This theorem is referenced by: sspsstr 3375 psssstr 3376 psstrd 3377 |
Copyright terms: Public domain | W3C validator |