NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  disj4 GIF version

Theorem disj4 3600
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 21-Mar-2004.)
Assertion
Ref Expression
disj4 ((AB) = ↔ ¬ (A B) ⊊ A)

Proof of Theorem disj4
StepHypRef Expression
1 disj3 3596 . 2 ((AB) = A = (A B))
2 eqcom 2355 . 2 (A = (A B) ↔ (A B) = A)
3 difss 3394 . . . 4 (A B) A
4 dfpss2 3355 . . . 4 ((A B) ⊊ A ↔ ((A B) A ¬ (A B) = A))
53, 4mpbiran 884 . . 3 ((A B) ⊊ A ↔ ¬ (A B) = A)
65con2bii 322 . 2 ((A B) = A ↔ ¬ (A B) ⊊ A)
71, 2, 63bitri 262 1 ((AB) = ↔ ¬ (A B) ⊊ A)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   = wceq 1642   cdif 3207  cin 3209   wss 3258  wpss 3259  c0 3551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260  df-pss 3262  df-nul 3552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator