| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > drnf1 | GIF version | ||
| Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| dral1.1 | ⊢ (∀x x = y → (φ ↔ ψ)) |
| Ref | Expression |
|---|---|
| drnf1 | ⊢ (∀x x = y → (Ⅎxφ ↔ Ⅎyψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dral1.1 | . . . 4 ⊢ (∀x x = y → (φ ↔ ψ)) | |
| 2 | 1 | dral1 1965 | . . . 4 ⊢ (∀x x = y → (∀xφ ↔ ∀yψ)) |
| 3 | 1, 2 | imbi12d 311 | . . 3 ⊢ (∀x x = y → ((φ → ∀xφ) ↔ (ψ → ∀yψ))) |
| 4 | 3 | dral1 1965 | . 2 ⊢ (∀x x = y → (∀x(φ → ∀xφ) ↔ ∀y(ψ → ∀yψ))) |
| 5 | df-nf 1545 | . 2 ⊢ (Ⅎxφ ↔ ∀x(φ → ∀xφ)) | |
| 6 | df-nf 1545 | . 2 ⊢ (Ⅎyψ ↔ ∀y(ψ → ∀yψ)) | |
| 7 | 4, 5, 6 | 3bitr4g 279 | 1 ⊢ (∀x x = y → (Ⅎxφ ↔ Ⅎyψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: nfald2 1972 drnfc1 2506 |
| Copyright terms: Public domain | W3C validator |