New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > drnfc1 | GIF version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
drnfc1.1 | ⊢ (∀x x = y → A = B) |
Ref | Expression |
---|---|
drnfc1 | ⊢ (∀x x = y → (ℲxA ↔ ℲyB)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drnfc1.1 | . . . . 5 ⊢ (∀x x = y → A = B) | |
2 | 1 | eleq2d 2420 | . . . 4 ⊢ (∀x x = y → (w ∈ A ↔ w ∈ B)) |
3 | 2 | drnf1 1969 | . . 3 ⊢ (∀x x = y → (Ⅎx w ∈ A ↔ Ⅎy w ∈ B)) |
4 | 3 | dral2 1966 | . 2 ⊢ (∀x x = y → (∀wℲx w ∈ A ↔ ∀wℲy w ∈ B)) |
5 | df-nfc 2479 | . 2 ⊢ (ℲxA ↔ ∀wℲx w ∈ A) | |
6 | df-nfc 2479 | . 2 ⊢ (ℲyB ↔ ∀wℲy w ∈ B) | |
7 | 4, 5, 6 | 3bitr4g 279 | 1 ⊢ (∀x x = y → (ℲxA ↔ ℲyB)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-cleq 2346 df-clel 2349 df-nfc 2479 |
This theorem is referenced by: nfabd2 2508 |
Copyright terms: Public domain | W3C validator |