NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  drnfc1 GIF version

Theorem drnfc1 2506
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypothesis
Ref Expression
drnfc1.1 (x x = yA = B)
Assertion
Ref Expression
drnfc1 (x x = y → (xAyB))

Proof of Theorem drnfc1
Dummy variable w is distinct from all other variables.
StepHypRef Expression
1 drnfc1.1 . . . . 5 (x x = yA = B)
21eleq2d 2420 . . . 4 (x x = y → (w Aw B))
32drnf1 1969 . . 3 (x x = y → (Ⅎx w A ↔ Ⅎy w B))
43dral2 1966 . 2 (x x = y → (wx w Awy w B))
5 df-nfc 2479 . 2 (xAwx w A)
6 df-nfc 2479 . 2 (yBwy w B)
74, 5, 63bitr4g 279 1 (x x = y → (xAyB))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540  wnf 1544   = wceq 1642   wcel 1710  wnfc 2477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-cleq 2346  df-clel 2349  df-nfc 2479
This theorem is referenced by:  nfabd2  2508
  Copyright terms: Public domain W3C validator