New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imbi12d | GIF version |
Description: Deduction joining two equivalences to form equivalence of implications. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbi12d.1 | ⊢ (φ → (ψ ↔ χ)) |
imbi12d.2 | ⊢ (φ → (θ ↔ τ)) |
Ref | Expression |
---|---|
imbi12d | ⊢ (φ → ((ψ → θ) ↔ (χ → τ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12d.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | imbi1d 308 | . 2 ⊢ (φ → ((ψ → θ) ↔ (χ → θ))) |
3 | imbi12d.2 | . . 3 ⊢ (φ → (θ ↔ τ)) | |
4 | 3 | imbi2d 307 | . 2 ⊢ (φ → ((χ → θ) ↔ (χ → τ))) |
5 | 2, 4 | bitrd 244 | 1 ⊢ (φ → ((ψ → θ) ↔ (χ → τ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: nfbidf 1774 drnf1 1969 drnf2 1970 equveli 1988 ax11v2 1992 ax11vALT 2097 ax10-16 2190 ax11eq 2193 ax11el 2194 ax11inda 2200 ax11v2-o 2201 mobid 2238 2mo 2282 2eu6 2289 axext3 2336 ralcom2 2776 cbvralf 2830 cbvraldva2 2840 vtoclgaf 2920 vtocl2gaf 2922 vtocl3gaf 2924 rspct 2949 rspc 2950 ceqex 2970 ralab2 3002 mob2 3017 mob 3019 morex 3021 reu7 3032 reu8 3033 sbcimg 3088 csbhypf 3172 cbvralcsf 3199 dfss2f 3265 sbcss 3661 sneqrg 3875 elintab 3938 intss1 3942 intmin 3947 dfiin2g 4001 preqr2g 4127 ssrelk 4212 eqpw1uni 4331 iota5 4360 nnsucelr 4429 nndisjeq 4430 ltfintri 4467 lenltfin 4470 ssfin 4471 ncfinlower 4484 tfinltfinlem1 4501 evenoddnnnul 4515 evenodddisj 4517 eventfin 4518 oddtfin 4519 nnadjoin 4521 sfintfin 4533 tfinnn 4535 spfinsfincl 4540 vfinspsslem1 4551 vfinspss 4552 copsexg 4608 vtoclr 4817 ssrel 4845 ssopr 4847 tz6.12i 5349 dff13f 5473 f1fveq 5474 fununiq 5518 funsi 5521 oprabid 5551 ov3 5600 caovcan 5629 ov2gf 5712 fvmptf 5723 op1st2nd 5791 fnpprod 5844 clos1conn 5880 trd 5922 frd 5923 extd 5924 symd 5925 trrd 5926 antid 5930 iserd 5943 fundmen 6044 fundmeng 6045 enmap2 6069 enpw 6088 sbthlem2 6205 sbth 6207 taddc 6230 letc 6232 ce2le 6234 nclenn 6250 muc0or 6253 spacind 6288 nchoicelem11 6300 nchoicelem12 6301 nchoicelem17 6306 nchoicelem19 6308 frecxp 6315 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |