New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > drnf2 | GIF version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
dral1.1 | ⊢ (∀x x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
drnf2 | ⊢ (∀x x = y → (Ⅎzφ ↔ Ⅎzψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dral1.1 | . . . 4 ⊢ (∀x x = y → (φ ↔ ψ)) | |
2 | 1 | dral2 1966 | . . . 4 ⊢ (∀x x = y → (∀zφ ↔ ∀zψ)) |
3 | 1, 2 | imbi12d 311 | . . 3 ⊢ (∀x x = y → ((φ → ∀zφ) ↔ (ψ → ∀zψ))) |
4 | 3 | dral2 1966 | . 2 ⊢ (∀x x = y → (∀z(φ → ∀zφ) ↔ ∀z(ψ → ∀zψ))) |
5 | df-nf 1545 | . 2 ⊢ (Ⅎzφ ↔ ∀z(φ → ∀zφ)) | |
6 | df-nf 1545 | . 2 ⊢ (Ⅎzψ ↔ ∀z(ψ → ∀zψ)) | |
7 | 4, 5, 6 | 3bitr4g 279 | 1 ⊢ (∀x x = y → (Ⅎzφ ↔ Ⅎzψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: nfsb4t 2080 drnfc2 2507 |
Copyright terms: Public domain | W3C validator |