NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  drnf2 GIF version

Theorem drnf2 1970
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
dral1.1 (x x = y → (φψ))
Assertion
Ref Expression
drnf2 (x x = y → (Ⅎzφ ↔ Ⅎzψ))

Proof of Theorem drnf2
StepHypRef Expression
1 dral1.1 . . . 4 (x x = y → (φψ))
21dral2 1966 . . . 4 (x x = y → (zφzψ))
31, 2imbi12d 311 . . 3 (x x = y → ((φzφ) ↔ (ψzψ)))
43dral2 1966 . 2 (x x = y → (z(φzφ) ↔ z(ψzψ)))
5 df-nf 1545 . 2 (Ⅎzφz(φzφ))
6 df-nf 1545 . 2 (Ⅎzψz(ψzψ))
74, 5, 63bitr4g 279 1 (x x = y → (Ⅎzφ ↔ Ⅎzψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545
This theorem is referenced by:  nfsb4t  2080  drnfc2  2507
  Copyright terms: Public domain W3C validator