NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dveel2ALT GIF version

Theorem dveel2ALT 2191
Description: Version of dveel2 2020 using ax-16 2144 instead of ax-17 1616. (Contributed by NM, 10-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dveel2ALT x x = y → (z yx z y))
Distinct variable group:   x,z

Proof of Theorem dveel2ALT
Dummy variable w is distinct from all other variables.
StepHypRef Expression
1 ax17el 2189 . 2 (z wx z w)
2 ax17el 2189 . 2 (z yw z y)
3 elequ2 1715 . 2 (w = y → (z wz y))
41, 2, 3dvelimh 1964 1 x x = y → (z yx z y))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-15 2143  ax-16 2144
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator