| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ectocl | GIF version | ||
| Description: Implicit substitution of class for equivalence class. (Contributed by set.mm contributors, 23-Jul-1995.) (Revised by set.mm contributors, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ectocl.1 | ⊢ S = (B / R) |
| ectocl.2 | ⊢ ([x]R = A → (φ ↔ ψ)) |
| ectocl.3 | ⊢ (x ∈ B → φ) |
| Ref | Expression |
|---|---|
| ectocl | ⊢ (A ∈ S → ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1321 | . 2 ⊢ ⊤ | |
| 2 | ectocl.1 | . . 3 ⊢ S = (B / R) | |
| 3 | ectocl.2 | . . 3 ⊢ ([x]R = A → (φ ↔ ψ)) | |
| 4 | ectocl.3 | . . . 4 ⊢ (x ∈ B → φ) | |
| 5 | 4 | adantl 452 | . . 3 ⊢ (( ⊤ ∧ x ∈ B) → φ) |
| 6 | 2, 3, 5 | ectocld 5992 | . 2 ⊢ (( ⊤ ∧ A ∈ S) → ψ) |
| 7 | 1, 6 | mpan 651 | 1 ⊢ (A ∈ S → ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ⊤ wtru 1316 = wceq 1642 ∈ wcel 1710 [cec 5946 / cqs 5947 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-qs 5952 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |