New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ectocld | GIF version |
Description: Implicit substitution of class for equivalence class. (Contributed by set.mm contributors, 9-Jul-2014.) |
Ref | Expression |
---|---|
ectocl.1 | ⊢ S = (B / R) |
ectocl.2 | ⊢ ([x]R = A → (φ ↔ ψ)) |
ectocld.3 | ⊢ ((χ ∧ x ∈ B) → φ) |
Ref | Expression |
---|---|
ectocld | ⊢ ((χ ∧ A ∈ S) → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqsi 5979 | . . . 4 ⊢ (A ∈ (B / R) → ∃x ∈ B A = [x]R) | |
2 | ectocl.1 | . . . 4 ⊢ S = (B / R) | |
3 | 1, 2 | eleq2s 2445 | . . 3 ⊢ (A ∈ S → ∃x ∈ B A = [x]R) |
4 | ectocld.3 | . . . . 5 ⊢ ((χ ∧ x ∈ B) → φ) | |
5 | ectocl.2 | . . . . . 6 ⊢ ([x]R = A → (φ ↔ ψ)) | |
6 | 5 | eqcoms 2356 | . . . . 5 ⊢ (A = [x]R → (φ ↔ ψ)) |
7 | 4, 6 | syl5ibcom 211 | . . . 4 ⊢ ((χ ∧ x ∈ B) → (A = [x]R → ψ)) |
8 | 7 | rexlimdva 2739 | . . 3 ⊢ (χ → (∃x ∈ B A = [x]R → ψ)) |
9 | 3, 8 | syl5 28 | . 2 ⊢ (χ → (A ∈ S → ψ)) |
10 | 9 | imp 418 | 1 ⊢ ((χ ∧ A ∈ S) → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 [cec 5946 / cqs 5947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-qs 5952 |
This theorem is referenced by: ectocl 5993 elqsn0 5994 qsdisj 5996 |
Copyright terms: Public domain | W3C validator |