| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > eldifsni | GIF version | ||
| Description: Membership in a set with an element removed. (Contributed by NM, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| eldifsni | ⊢ (A ∈ (B ∖ {C}) → A ≠ C) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 3840 | . 2 ⊢ (A ∈ (B ∖ {C}) ↔ (A ∈ B ∧ A ≠ C)) | |
| 2 | 1 | simprbi 450 | 1 ⊢ (A ∈ (B ∖ {C}) → A ≠ C) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 1710 ≠ wne 2517 ∖ cdif 3207 {csn 3738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-sn 3742 |
| This theorem is referenced by: neldifsn 3842 |
| Copyright terms: Public domain | W3C validator |