NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eleq12 GIF version

Theorem eleq12 2415
Description: Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.)
Assertion
Ref Expression
eleq12 ((A = B C = D) → (A CB D))

Proof of Theorem eleq12
StepHypRef Expression
1 eleq1 2413 . 2 (A = B → (A CB C))
2 eleq2 2414 . 2 (C = D → (B CB D))
31, 2sylan9bb 680 1 ((A = B C = D) → (A CB D))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346  df-clel 2349
This theorem is referenced by:  nnsucelr  4428  ncfinlower  4483  sfindbl  4530
  Copyright terms: Public domain W3C validator