NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eleq1i GIF version

Theorem eleq1i 2416
Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
eleq1i.1 A = B
Assertion
Ref Expression
eleq1i (A CB C)

Proof of Theorem eleq1i
StepHypRef Expression
1 eleq1i.1 . 2 A = B
2 eleq1 2413 . 2 (A = B → (A CB C))
31, 2ax-mp 5 1 (A CB C)
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642   wcel 1710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346  df-clel 2349
This theorem is referenced by:  eleq12i  2418  eqeltri  2423  opeqexb  4620  ssrel  4844  proj1eldm  4927  co01  5093  fressnfv  5439
  Copyright terms: Public domain W3C validator