New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eleq2 | GIF version |
Description: Equality implies equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleq2 | ⊢ (A = B → (C ∈ A ↔ C ∈ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2347 | . . . . . 6 ⊢ (A = B ↔ ∀x(x ∈ A ↔ x ∈ B)) | |
2 | 1 | biimpi 186 | . . . . 5 ⊢ (A = B → ∀x(x ∈ A ↔ x ∈ B)) |
3 | 2 | 19.21bi 1758 | . . . 4 ⊢ (A = B → (x ∈ A ↔ x ∈ B)) |
4 | 3 | anbi2d 684 | . . 3 ⊢ (A = B → ((x = C ∧ x ∈ A) ↔ (x = C ∧ x ∈ B))) |
5 | 4 | exbidv 1626 | . 2 ⊢ (A = B → (∃x(x = C ∧ x ∈ A) ↔ ∃x(x = C ∧ x ∈ B))) |
6 | df-clel 2349 | . 2 ⊢ (C ∈ A ↔ ∃x(x = C ∧ x ∈ A)) | |
7 | df-clel 2349 | . 2 ⊢ (C ∈ B ↔ ∃x(x = C ∧ x ∈ B)) | |
8 | 5, 6, 7 | 3bitr4g 279 | 1 ⊢ (A = B → (C ∈ A ↔ C ∈ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: eleq12 2415 eleq2i 2417 eleq2d 2420 nelneq2 2452 clelsb2 2456 dvelimdc 2510 nelne1 2606 neleq2 2609 raleqf 2804 rexeqf 2805 reueq1f 2806 rmoeq1f 2807 rabeqf 2853 clel3g 2977 clel4 2979 sbcel2gv 3107 sbnfc2 3197 nineq1 3235 uneq1 3412 ineq1 3451 unineq 3506 n0i 3556 disjel 3598 elif 3697 sneqr 3873 unsneqsn 3888 elunii 3897 eluniab 3904 ssuni 3914 elinti 3936 elintab 3938 intss1 3942 intmin 3947 intab 3957 iineq2 3987 dfiin2g 4001 preqr1 4125 preq12b 4128 opkth1g 4131 eluni1g 4173 cnvkeq 4216 ins2keq 4219 ins3keq 4220 imakeq1 4225 sikeq 4242 unipw1 4326 eqpw1uni 4331 pw1eqadj 4333 dfnnc2 4396 0cnsuc 4402 peano5 4410 0fin 4424 nnsucelr 4429 nndisjeq 4430 snfi 4432 ssfin 4471 vfinnc 4472 ncfinprop 4475 ncfineleq 4478 ncfinraise 4482 ncfinlower 4484 nnpw1ex 4485 tfinprop 4490 nnadjoin 4521 nnpweq 4524 sfineq1 4527 sfineq2 4528 sfinltfin 4536 spfininduct 4541 vfin1cltv 4548 vfinspsslem1 4551 phi11lem1 4596 phi011lem1 4599 proj1op 4601 proj2op 4602 breq 4642 epelc 4766 xpeq1 4799 xpeq2 4800 fnasrn 5418 f1oiso 5500 ndmovg 5614 mpt2eq123 5662 clos1basesucg 5885 erth 5969 elqsn0 5994 eqncg 6127 ncseqnc 6129 peano4nc 6151 2p1e3c 6157 nntccl 6171 ovce 6173 dflec3 6222 ncfin 6248 addcdi 6251 ncvsq 6257 0lt1c 6259 nmembers1lem1 6269 |
Copyright terms: Public domain | W3C validator |