NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eleqtri GIF version

Theorem eleqtri 2425
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eleqtr.1 A B
eleqtr.2 B = C
Assertion
Ref Expression
eleqtri A C

Proof of Theorem eleqtri
StepHypRef Expression
1 eleqtr.1 . 2 A B
2 eleqtr.2 . . 3 B = C
32eleq2i 2417 . 2 (A BA C)
41, 3mpbi 199 1 A C
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   wcel 1710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346  df-clel 2349
This theorem is referenced by:  eleqtrri  2426  3eltr3i  2431  prid2  3828
  Copyright terms: Public domain W3C validator