NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqeltrri GIF version

Theorem eqeltrri 2424
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eqeltrr.1 A = B
eqeltrr.2 A C
Assertion
Ref Expression
eqeltrri B C

Proof of Theorem eqeltrri
StepHypRef Expression
1 eqeltrr.1 . . 3 A = B
21eqcomi 2357 . 2 B = A
3 eqeltrr.2 . 2 A C
42, 3eqeltri 2423 1 B C
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   wcel 1710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346  df-clel 2349
This theorem is referenced by:  3eltr3i  2431  vvex  4110  0ex  4111  nnc0suc  4413  nncaddccl  4420  nnsucelrlem1  4425  nndisjeq  4430  preaddccan2lem1  4455  ltfintrilem1  4466  ssfin  4471  ncfinraiselem2  4481  ncfinlowerlem1  4483  tfin0c  4498  evenoddnnnul  4515  evenodddisjlem1  4516  nnadjoinlem1  4520  nnpweqlem1  4523  sfintfinlem1  4532  tfinnnlem1  4534  vfinspss  4552  vfinspclt  4553  vfinncsp  4555  phialllem1  4617  clos1ex  5877  clos1basesuc  5883  mapexi  6004  fnpm  6009  enpw1lem1  6062  nenpw1pwlem1  6085  tc0c  6164  tc1c  6166  2nnc  6168  ce0nn  6181  ce0  6191  leconnnc  6219  nclennlem1  6249  nnltp1clem1  6262  addccan2nclem2  6265  nmembers1lem1  6269  nncdiv3lem2  6277  nnc3n3p1  6279  spacvallem1  6282  nchoicelem4  6293  nchoicelem11  6300  nchoicelem12  6301  nchoicelem16  6305  nchoicelem17  6306  nchoicelem18  6307
  Copyright terms: Public domain W3C validator