New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqeltrri | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeltrr.1 | ⊢ A = B |
eqeltrr.2 | ⊢ A ∈ C |
Ref | Expression |
---|---|
eqeltrri | ⊢ B ∈ C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrr.1 | . . 3 ⊢ A = B | |
2 | 1 | eqcomi 2357 | . 2 ⊢ B = A |
3 | eqeltrr.2 | . 2 ⊢ A ∈ C | |
4 | 2, 3 | eqeltri 2423 | 1 ⊢ B ∈ C |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: 3eltr3i 2431 vvex 4110 0ex 4111 nnc0suc 4413 nncaddccl 4420 nnsucelrlem1 4425 nndisjeq 4430 preaddccan2lem1 4455 ltfintrilem1 4466 ssfin 4471 ncfinraiselem2 4481 ncfinlowerlem1 4483 tfin0c 4498 evenoddnnnul 4515 evenodddisjlem1 4516 nnadjoinlem1 4520 nnpweqlem1 4523 sfintfinlem1 4532 tfinnnlem1 4534 vfinspss 4552 vfinspclt 4553 vfinncsp 4555 phialllem1 4617 clos1ex 5877 clos1basesuc 5883 mapexi 6004 fnpm 6009 enpw1lem1 6062 nenpw1pwlem1 6085 tc0c 6164 tc1c 6166 2nnc 6168 ce0nn 6181 ce0 6191 leconnnc 6219 nclennlem1 6249 nnltp1clem1 6262 addccan2nclem2 6265 nmembers1lem1 6269 nncdiv3lem2 6277 nnc3n3p1 6279 spacvallem1 6282 nchoicelem4 6293 nchoicelem11 6300 nchoicelem12 6301 nchoicelem16 6305 nchoicelem17 6306 nchoicelem18 6307 |
Copyright terms: Public domain | W3C validator |