New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eleqtrri | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleqtrr.1 | ⊢ A ∈ B |
eleqtrr.2 | ⊢ C = B |
Ref | Expression |
---|---|
eleqtrri | ⊢ A ∈ C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrr.1 | . 2 ⊢ A ∈ B | |
2 | eleqtrr.2 | . . 3 ⊢ C = B | |
3 | 2 | eqcomi 2357 | . 2 ⊢ B = C |
4 | 1, 3 | eleqtri 2425 | 1 ⊢ A ∈ C |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: 3eltr4i 2432 0cnsuc 4402 0ceven 4506 ncvspfin 4539 ce0 6191 cet 6235 nmembers1 6272 |
Copyright terms: Public domain | W3C validator |