| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > prid2 | GIF version | ||
| Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prid2.1 | ⊢ B ∈ V |
| Ref | Expression |
|---|---|
| prid2 | ⊢ B ∈ {A, B} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid2.1 | . . 3 ⊢ B ∈ V | |
| 2 | 1 | prid1 3828 | . 2 ⊢ B ∈ {B, A} |
| 3 | prcom 3799 | . 2 ⊢ {B, A} = {A, B} | |
| 4 | 2, 3 | eleqtri 2425 | 1 ⊢ B ∈ {A, B} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 1710 Vcvv 2860 {cpr 3739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |