New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elsncg | GIF version |
Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
elsncg | ⊢ (A ∈ V → (A ∈ {B} ↔ A = B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2359 | . 2 ⊢ (x = A → (x = B ↔ A = B)) | |
2 | df-sn 3742 | . 2 ⊢ {B} = {x ∣ x = B} | |
3 | 1, 2 | elab2g 2988 | 1 ⊢ (A ∈ V → (A ∈ {B} ↔ A = B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 {csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sn 3742 |
This theorem is referenced by: elsnc 3757 elsni 3758 snidg 3759 eltpg 3770 eldifsn 3840 opkth1g 4131 |
Copyright terms: Public domain | W3C validator |