New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elab2g | GIF version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elab2g.1 | ⊢ (x = A → (φ ↔ ψ)) |
elab2g.2 | ⊢ B = {x ∣ φ} |
Ref | Expression |
---|---|
elab2g | ⊢ (A ∈ V → (A ∈ B ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab2g.2 | . . 3 ⊢ B = {x ∣ φ} | |
2 | 1 | eleq2i 2417 | . 2 ⊢ (A ∈ B ↔ A ∈ {x ∣ φ}) |
3 | elab2g.1 | . . 3 ⊢ (x = A → (φ ↔ ψ)) | |
4 | 3 | elabg 2987 | . 2 ⊢ (A ∈ V → (A ∈ {x ∣ φ} ↔ ψ)) |
5 | 2, 4 | syl5bb 248 | 1 ⊢ (A ∈ V → (A ∈ B ↔ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 {cab 2339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
This theorem is referenced by: elab2 2989 elab4g 2990 elning 3218 elprg 3751 elsncg 3756 eluni 3895 eliun 3974 eliin 3975 el1c 4140 elxpk 4197 elimakg 4258 elp6 4264 eladdc 4399 evennn 4507 oddnn 4508 evennnul 4509 oddnnul 4510 sucevenodd 4511 sucoddeven 4512 eventfin 4518 oddtfin 4519 elopab 4697 elima 4755 opeliunxp 4821 elqsg 5977 elcan 6330 elscan 6331 |
Copyright terms: Public domain | W3C validator |