New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elab2g | GIF version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elab2g.1 | ⊢ (x = A → (φ ↔ ψ)) |
elab2g.2 | ⊢ B = {x ∣ φ} |
Ref | Expression |
---|---|
elab2g | ⊢ (A ∈ V → (A ∈ B ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab2g.2 | . . 3 ⊢ B = {x ∣ φ} | |
2 | 1 | eleq2i 2417 | . 2 ⊢ (A ∈ B ↔ A ∈ {x ∣ φ}) |
3 | elab2g.1 | . . 3 ⊢ (x = A → (φ ↔ ψ)) | |
4 | 3 | elabg 2986 | . 2 ⊢ (A ∈ V → (A ∈ {x ∣ φ} ↔ ψ)) |
5 | 2, 4 | syl5bb 248 | 1 ⊢ (A ∈ V → (A ∈ B ↔ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 {cab 2339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 |
This theorem is referenced by: elab2 2988 elab4g 2989 elning 3217 elprg 3750 elsncg 3755 eluni 3894 eliun 3973 eliin 3974 el1c 4139 elxpk 4196 elimakg 4257 elp6 4263 eladdc 4398 evennn 4506 oddnn 4507 evennnul 4508 oddnnul 4509 sucevenodd 4510 sucoddeven 4511 eventfin 4517 oddtfin 4518 elopab 4696 elima 4754 opeliunxp 4820 elqsg 5976 elcan 6329 elscan 6330 |
Copyright terms: Public domain | W3C validator |