NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqsb1lem GIF version

Theorem eqsb1lem 2453
Description: Lemma for eqsb1 2454. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
eqsb1lem ([y / x]x = Ay = A)
Distinct variable groups:   x,y   x,A
Allowed substitution hint:   A(y)

Proof of Theorem eqsb1lem
StepHypRef Expression
1 nfv 1619 . 2 x y = A
2 eqeq1 2359 . 2 (x = y → (x = Ay = A))
31, 2sbie 2038 1 ([y / x]x = Ay = A)
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642  [wsb 1648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346
This theorem is referenced by:  eqsb1  2454
  Copyright terms: Public domain W3C validator