New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqsb1lem | GIF version |
Description: Lemma for eqsb1 2454. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
eqsb1lem | ⊢ ([y / x]x = A ↔ y = A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎx y = A | |
2 | eqeq1 2359 | . 2 ⊢ (x = y → (x = A ↔ y = A)) | |
3 | 1, 2 | sbie 2038 | 1 ⊢ ([y / x]x = A ↔ y = A) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 |
This theorem is referenced by: eqsb1 2454 |
Copyright terms: Public domain | W3C validator |